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In the paper, the dynamic response of a simply supported viscoelastic beam of the fractio-
nal derivative type to a moving force load is studied. The Bernoulli-Euler beam with the
fractional derivative viscoelastic Kelvin-Voigt material model is considered. The Riemann-
Liouville fractional derivative of the order 0 < α ¬ 1 is used. The forced-vibration solution
of the beam is determined using the mode superposition method. A convolution integral
of fractional Green’s function and forcing function is used to achieve the beam response.
Green’s function is formulated by two terms. The first term describes damped vibrations
around the drifting equilibrium position, while the second term describes the drift of the
equilibrium position. The solution is obtained analytically whereas dynamic responses are
calculated numerically. A comparison between the results obtained using the fractional and
integer viscoelastic material models is performed. Next, the effects of the order of the frac-
tional derivative and velocity of the moving force on the dynamic response of the beam are
studied. In the analysed system, the effect of the term describing the drift of the equilibrium
position on the beam deflection is negligible in comparison with the first term and therefore
can be omitted. The calculated responses of the beam with the fractional material model
are similar to those presented in works of other authors.

Keywords: fractional viscoelasticity, moving loads, beam vibrations, transient dynamic
analysis

1. Introduction

The problem of predicting the dynamic response of a structure resulting from the passage of
moving loads often occurs in engineering analysis. This problem has many applications in en-
gineering analysis, some of these applications are vibrations that occur in bridges and railroad
tracks, cranes, machine elements, weapon barrels, rails, rail and vehicle body parts. The studies
show that the transversal deflection and stresses due to moving loads are considerably higher
than those observed with stationary loads. The dynamic behaviour of a beam subjected to mo-
ving loads or moving masses have been studied extensively in connection with the design of
railway tracks and bridges as well as machining processes. A broad overview of the analytical
and numerical methods deals with these issues is provided in a book by Fryba (1972). A newer
survey of these methods can be found e.g. in a book by Bajer and Dyniewicz (2012). The book
also presents a comprehensive overview of the numerical methods including the finite element
method (FEM) and the space-time element method (STEM). Additionally, both these books
contain a broad bibliography devoted to the dynamic analysis of structures subjected to moving
loads.

Furthermore, damping effects on structure dynamics are considered in many works devoted
to the mentioned above subject (e.g Fryba, 1972). Therefore, selection of an appropriate visco-
elastic material model is an essential element in studying the dynamical behaviour of mechanical
structures. The selected model should as accurately as possible describe viscoelastic damping
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over a wide interval of frequencies. A large number of engineering materials show a weak fre-
quency dependence of their damping properties within a broad frequency range (Bagley and
Torvik, 1983a,b; Caputo and Mainardi, 1971a; Clough and Penzien, 1993). This weak frequency
dependence is difficult to describe using classical viscoelastic models, based on integer order rate
laws. In the recent years, the fractional derivatives have been frequently utilized to describe
dynamic characteristics of viscoelastic materials and damping elements (Podlubny, 1999; Ma-
inardi, 2009; Rossikhin and Shitikova, 2010; Hedrih (Stevanović) 2014; Hedrih (Stevanović) and
Machado, 2015). By introducing fractional-order derivatives instead of integer-order derivatives
in the constitutive relations, the number of parameters required to accurately describe the dyna-
mic properties can be significantly reduced (see, e.g., Caputo and Mainardi, 1971b; Bagley and
Torvik, 1983b; Enelund and Olsson, 1999). A review of publications dedicated to application
of fractional calculus in dynamics of solids can be found in the paper by Rossikhin and Shiti-
kova (2010). Moreover, a fractional damping is utilized in dynamical analysis of beams under
moving loads (e.g. Abu-Mallouh et al., 2012; Alkhaldi et al., 2013). In these papers, taken into
consideration are only loads moving at a constant speed. The solutions presented in these works
are obtained with the help of Mittag-Lefler functions and infinite series. In numerous studies in
which fractional viscoelastic models are employed, the dynamic transient analysis is limited to
the response induced by initial conditions. However, structures subjected to moving loads with a
time varying velocity are often encountered in engineering practice. The number of publications
considering the dynamic behaviour of a beam with a fractional viscoelstic model under moving
loads is rather limited. Numerous research works related to structure vibrations described by
fractional models present transient solutions expressed as series expansions (Atanackovic and
Stankovic, 2002; Bagley and Torvik, 1986; Caputo, 1974; Hedrih (Stevanović) and Filipovski,
2002; Podlubny, 1999) which are not very useful for practical applications because of their slow
convergence rate (Podlubny, 1999; Rossikhin and Shitikova, 2010). Thus, the aim of this work
is demonstration of an approach utilizing fractional Green’s function in dynamical analysis of
a simply-supported beam subjected to a moving force with a constant velocity and constant
acceleration. Green’s function is evaluated using a closed contour of integration in conjunction
with the residue theorem (Caputo and Mainardi, 1971b; Bagley and Torvik, 1983b, 1986; Ros-
sikhin and Shitikova, 1997; Beyer and Kempfle, 1995). The proposed approach is the expansion
of methods employing fractional calculus in the modelling of damping properties of dynamic
systems.

2. Problem formulation

The equation of motion of the examined beam is derived on the assumption of the Bernoulli-
-Euler theory, neglecting rotary inertia and shear deformation. Furthermore, it is assumed that
the beam is homogeneous with constant cross-section along its length, and the neutral axis of
the beam bending is one of the principal axes of inertia of the normal cross section of the beam.
Beam oscillations are assumed in the xy plane (Fig. 1). Moreover, it is assumed that the internal
dissipation of mechanical energy in the beam material is described by a differential equation of
the fractional order. Therefore, the stress-strain constitutive relation of the beam material is in
the following form (e.g. Bagley and Torvik, 1983a)

σ = Eε(t) + E′γD
γ
t [ε(t)] = E

(
ε+ µγ

dγε(t)

dtγ

)
(2.1)

where: µγ = E
′

γ/E, E – Young’s modulus of the beam material, E
′

γ – damping coefficient,
Dγt [·] – fractional order differential operator of the γ-th derivative with respect to time t in the
following form (Miller and Ross, 1993; Podlubny, 1999)
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Dγt f(t) ≡
dγ

dtγ
f(t) ≡

1

Γ (1− γ)

d

dt

t∫

0

f(τ) dτ

(t− τ)γ
(2.2)

where Γ (1− γ) is the Euler gamma function and t  0 (Miller and Ross, 1993; Podlubny, 1999).

For many real materials, the fractional derivative order is commonly assumed to be in the
interval 0 < γ < 1 (Caputo and Mainardi, 1971a; Bagley and Torvik, 1983b; Enelund and
Olsson, 1999). The constitutive relation with γ = 1 represents Kelvin-Voight material with
internal linear dissipation of mechanical energy (e.g. Mainardi, 2009; Hedrih (Stevanović), 2014)

Fig. 1. Scheme of the analysed system

The beam is assumed to be subjected to a force moving with a constant velocity or accelera-
tion from the left to the right edge of the beam, according with the sense of the x axis (Fig. 1).
Based on the above assumptions, the governing equation of the analysed beam is obtained as
below

EJ
(∂4y(x, t)
∂x4

+ µγ
dγ

dtγ

(∂4y(x, t)
∂x4

))
+Aρ

∂2y(x, t)

∂t2
= Fδ(x− g(t)) (2.3)

where A is the cross-section area of the beam, J – axial moment of inertia of the beam cross-
-section respect to the neutral axis of the beam bending, ρ – material mass density of the beam,
y(x, t) – transversal displacement of the neutral beam axis (Fig. 1), t – time, x – longitudinal
coordinate, F – intensity of the external moving and concentrated force, δ – Dirac delta function,
g(t) – function determining the force location, g(t) = vt or g(t) = εt2/2 for a force moving with a
constant velocity or constant acceleration, respectively. Furthermore, this function must satisfy
the following condition 0 ¬ g(t) ¬ l.

For the simply-supported beam, the deflection and bending moment at both beam ends have
to be zero, thus the boundary conditions are as below

y(0, t) = 0 y(l, t) = 0 Mb(0, t) = 0 Mb(l, t) = 0 (2.4)

where l is the length of the beam, Mb – bending moment.

The bending moment is calculated as below

Mb(x, t) =

∫

A

σy dA =

∫

A

{Eε(t) + E′γD
γ
t [ε(t)]}y dA = −EJ

{d2y(x, t)
dx2

+ µγD
γ
t

[d2y(x, t)
dx2

]}

(2.5)

therefore

d2y(0, t)

dx2
=
d2y(l, t)

dx2
= 0 Dγt

[d2y(0, t)
dx2

]
= Dγt

[d2y(l, t)
dx2

]
= 0 (2.6)

Moreover, it is assumed that the beam is initially at rest and the initial bending moments are
equal to 0.
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The solution to Eq. (2.3) is obtained utilizing the mode superposition principle (e.g. Kaliski,
1966; Clough and Penzien, 1993; Rao, 2004). The eigenfunctions for a simply supported beam
are given by

Yn(x) = sin
nπx

l
n = 1, 2, 3, . . . (2.7)

Then, the forced-vibration solution of a beam can be expressed as

y(x, t) =
∞∑

n=1

ξn(t)Yn(x) =
∞∑

n=1

ξn(t) sin
nπx

l
(2.8)

and the corresponding derivatives are evaluated below

∂4y(x, t)

∂x4
=
∞∑

n=1

Y IVn (x)ξn(t)
dγ

dt

(∂4y(x, t)
∂x4

)
=
∞∑

n=1

Y IVn (x)D
γ
t [ξ(t)] (2.9)

where

Dγt [ξn(t)] =
dγξ(t)

dtγ
=

1

Γ (1− γ)

d

dt

t∫

0

ξn(t) dτ

(t− τ)γ

and

Y IVn (x) =
d4Y (x)

dx4
∂2y(x, t)

∂t2
=
∞∑

n=1

Yn(x)ξ̈n(t) (2.10)

where

ξ̈(t) =
d2ξ(t)

dt2
(2.11)

Substituting Eqs. (2.9) and (2.10) into (2.3), we get

∞∑

n=1

(
Y IVn (x)ξn(t) + µγY

IV
n (x)D

γ
t [ξn(t)] + a

2
bY (x)ξ̈n(t)

)
=
F

EJ
δ(x− g(t)) (2.12)

Next, integrating over x from 0 to 1, and using the orthogonality property of eigenfunctions,
after some mathematical transformations, the following relationships are obtained

ξ̈n(t) + µγω
2
nD
γ
t [ξn(t)] + ω

2
nξn(t) = f0 sin

nπg(t)

l
(2.13)

where

f0 =
2F

m
ωn =

(πn
l

)2
√
EJ

ρA

m – mass of the beam.
Assuming zero initial conditions

ξ(t)
∣∣∣
t=0
= 0

d[ξ(t)]

dt

∣∣∣∣∣
t=0

= 0
dγ−1[ξ(t)]

dtγ−1

∣∣∣∣∣
t=0

= 0

the solution of equations (2.13) can be expressed as

ξn(t) = f0

t∫

0

Gn(t− τ) sin
nπg(τ)

l
dτ (2.14)
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where Gn(t) is Green’s function corresponding to Eq. (2.13) (Miller and Ross, 1993; Podlubmy,
1999; Rossikhin and Shitikova, 1997, 2010). This Green’s function consists of two terms, namely

Gn(t) = K1n(t) +K2n(t) (2.15)

The first term K1n (Eq. (2.15)) represents damped vibrations around the drifting equilibrium
position, while the second term K2n describes the drift of the equilibrium position (Beyer and
Kempfle, 1995; Rossikhin and Shitikova, 1997). The term K1n could be calculated from the
formula given by Beyer and Kempfle (1995)

K1n(t) = αne
−σnt sin(Ωnt+ φn) (2.16)

where

αn =
2√
µ2k + ν

2
φn = arctan

µk
ν

µk = Re(W
′

(p,1,2)) ν = Im(W ′(p,1,2))

and W (p) = p2 + µγω
2
np
γ + ω2n is the characteristic polynomial of equations (2.13),

W ′(p) = 2p + γµγω
2
np
γ−1 – derivative of the characteristic polynomial with respect p,

p1,2 = −σn ± iΩn – conjugate complex roots of the characteristic polynomial W (p).

The term K2n could be calculated using the formula (Beyer and Kempfle, 1995)

K2n(t) =
µγω

2
n sin(πγ)

π

∞∫

0

rγe−rt dr

[r2 + µγω2nr
γ cos(πγ) + ω2n]

2 + [µγω2nr
γ sin(πγ)]2

(2.17)

In some cases of vibration analysis, K2n could be neglected in comparison with K1n (Kempfle
et al., 2002; Rossikhin and Shitikova, 1997).

In the case of a viscoelastic integer order Kelvin-Voigt material model, the governing equation
of the analysed beam has the following form (Kaliski, 1966)

EJ
(∂4y(x, t)
∂x4

+ µ
∂5y(x, t)

∂x4∂t

)
+Aρ

∂2y(x, t)

∂t2
= Fδ(x− g(t)) (2.18)

The solution to the equation (2.18) could be obtained using a similar approach as in the case of
the equation with fractional damping. For each n-th mode, the response could be calculated as
follows (Kaliski, 1966)

ξn(t) =






f0
ωhn

t∫

0

e−hn(t−τ) sin(ωhn(t− τ)) sin
nπg(τ)

l
dτ for hn < ωn

f0
ω̃hn

t∫

0

e−hn(t−τ) sinh(ω̃hn(t− τ)) sin
nπg(τ)

l
dτ for h > ωn

(2.19)

where

hn =
1

2
µω2n ωhn =

√
ω2n − h

2
n ω̃hn =

√
h2n − ω

2
n

It should be noted that when γ = 1 (integer order derivative), the component K2n of frac-
tional Green’s function (Eqs. (2.15) and (2.17)) vanishes, and it could be demonstrated that
equations with a fractional and integer order derivative (Eq. (2.19)) are equivalent in the case
of a subcritically damped system, i.e. ωn > hn.
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3. Calculation results and discussion

In order to demonstrate the feasibility of the described above method, exemplary calculations
of a beam subjected to a moving load have been performed. Responses of the beam with the
fractional viscoelastic model are computed using equations (2.13)-(2.17) whereas the responses
of the beam with the integer order derivative model are computed using equation (2.19).
The dimensionless dynamic deflection of the beam y/y0 versus the dimensionless time para-

meter s has been computed. The variable y0 denotes the static deflection at the beam mid-span
and can be calculated from the equation

y0 =
F0l
3

48EI
(3.1)

The dimensionless time parameter s is defined as

s =
vt

l
or s =

εt2

2l
(3.2)

in the case of a constant force velocity or constant acceleration, respectively.
The calculations are accomplished for several values of the order of fractional derivative γ,

dimensionless velocity v/vcr and acceleration ε/εcr. Variables vcr and εcr denote the critical
velocity and acceleration, respectively. The critical velocity corresponds to the first natural
vibration frequency of the beam and is defined as (Fryba, 1972)

vcr =
π

l

√
EJ

ρA
(3.3)

whereas the critical acceleration is defined as the acceleration at which the force at the end of
the beam reaches the critical velocity and is defined as

εcr =
π2

l3
EJ

ρA
(3.4)

Firstly, the dynamic response of the beam subjected to a moving force at a constant velocity
calculated with the help of presented above equations are compared to the results obtained using
the corresponding formula given by Fryba (1972). These comparative calculations are performed
assuming a very light damping i.e. µγ = 1 · 10

−5 sγ and γ = 1 (integer order derivative). The
calculations are performed for v/vcr = 0.5 (Eq. (3.1)). The calculation results obtained using
the both equations are virtually identical. Minimal differences are found in the results, which
is probably caused by differences in the modelling of damping in the system. Namely, in the
equations given by Fryba (1972) it is assumed that the damping coefficient is independent of
vibration modes and frequency in contrast to the damping model utilized in this work (Eqs.
(2.3) and (2.13)). Next, in order to illustrate the application of the presented above procedure,
computational examples for the response of the beam loaded with a moving force are perfor-
med. The calculations are carried out for the beam of length 20m, mass density 7600 kg/m3,
cross-section area 2 · 10−3m2, cross-section moment of inertia 3.953 · 10−6m4, Young’s modulus
2.1 · 105MPa, coefficient µγ = 3 · 10

−2 sγ . The force value is assumed F = 100N.
From equation (2.16), it follows that the values of damping coefficients and vibration ampli-

tudes depend on the roots of the characteristic equation and, therefore, knowledge of the roots
is required for further calculations. The roots are computed for the varying fractional derivative
order γ. The dependence of the roots of the characteristic equation on the fractional derivative
order is shown in Fig. 2 (for the first two vibration modes). The real part of the root determines
the damping coefficient whereas the imaginary part determines the vibration frequency (Eq.
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Fig. 2. Relationship between roots of the characteristic equation and the order of fractional derivative:
(a) real part, (b) imaginary part

(2.16)). Performed calculations reveal that the value of the damping coefficient increases with
the order of fractional derivative (Fig. 2a) but the vibration frequency is practically constant
(Fig. 2b).

Moreover, the ratio of the real to the imaginary part of the roots of the characteristic equation
increases with the increaasing order of fractional derivative (Fig. 3a), whereas the amplitude αn
(Eq. (2.16)) is practically independent of the order of fractional derivative (Fig. 3b). It could
be expected that the dynamic deflection of the beam decreases with the increasing order of
fractional derivative.

Fig. 3. (a) Ratio of the real to the imaginary part of the roots of the characteristic equation,
(b) relationship between the amplitude αn and the order of fractional derivative

The responses of the beam subjected to a force moving at a constant velocity are presented
in Figs. 4-6. In Fig. 4, the dimensionless dynamic deflection of the beam at the point under
the travelling force at various values of the derivative order γ is presented whereas the dynamic
deflection at the mid-span of the beam is shown in Fig. 5. These results reveal that deflection
of the beam under a moving force decreases with the increasing order of fractional derivati-
ve γ (Fig. 4). The maximum deflection of the beam is greater for the dimensionless velocity
v/vcr = 0.5 than v/vcr = 1.0. In the case v/vcr = 0.5, the dynamic deflection at the mid-span
of the beam decreases with the increasing order of fractional derivative when s < 0.775 while
increases when 0.775 < s < 1.0 (Fig. 5a). In the case v/vcr = 1.0, the dynamic deflection decre-
ases with the increasing order of fractional derivative for the total duration of force action. In
the case of a force moving at a constant velocity, for all computational examples, the maximum
beam deflection is obtained when γ = 0.25 (Figs. 5 and 6)

A comparison between the dynamic deflections of the beam at various values of force velocity
in the case of the derivative order γ = 0.5 is shown in Fig. 6. The response curves are similar to
the corresponding curves computed for the integer order derivative presented in the literature
(Fryba, 1972; Bajer and Dyniewicz, 2012; Abu Hilal and Zibdeh, 2000).



1440 J. Freundlich

Fig. 4. Dynamic deflection of the beam under the moving force at various values of the derivative
order γ, in the case of constant velocity: (a) v/vcr = 0.5, (b) v/vcr = 1.0

Fig. 5. Dynamic deflection at the mid-span of the beam at various values of the derivative order γ in the
case of constant velocity: (a) v/vcr = 0.5, (b) v/vcr = 1.0

Fig. 6. A comparison between the dynamic deflection of the beam at various values of force
velocity v/vcr in the case of the derivative order γ = 0.5: (a) under the travelling force, (b) at the

mid-span of the beam

Beam responses to the force moving at a constant acceleration are presented in Figs. 7-9. In
Fig. 7, the dimensionless dynamic deflection of the beam at the point under the travelling force
at various values of the derivative order γ is presented whereas the dynamic deflection at the
mid-span of the beam is shown in Fig. 8. For all computational examples, the maximum beam
deflection occurs in the case of γ = 0.25 (Figs. 7 and 8). In the case of ε/εcr = 0.5, the beam
responses computed for various orders of the fractional derivatives differ slightly. The difference
between curves obtained for ε/εcr = 0.5 are smaller than for the curves obtained for ε/εcr = 1.0
(Figs. 7 and 8).

In all calculation cases, the calculated values of the component K2 of fractional Green’s
function are negligible in comparison to the values of the component K1 (Eqs. (2.13)-(2.15)).
Examples of K1 and K2 components of fractional Green’s function as a function of the dimen-
sionless time are shown in Fig. 10.
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Fig. 7. Dynamic deflection of the beam under the travelling force at various values of the derivative
order γ in the case of dimensionless acceleration: (a) ε/εcr = 0.5, (b) ε/εcr = 1.0

Fig. 8. Dynamic deflection at the mid-span of the beam at various values of the derivative order γ, in
the case of dimensionless acceleration: (a) ε/εcr = 0.5, (b) ε/εcr = 1.0

Fig. 9. A comparison between the dynamic deflection of the beam at various values of force acceleration
ε/εcr in the case of the derivative order γ = 0.5: (a) under the travelling force, (b) at the mid-span of

the beam

Fig. 10. Values of components K1 and K2 of fractional Green’s function versus dimensionless time:
(a) constant velocity, (b) constant acceleration
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4. Conclusions

In this paper, the governing equations of dynamic behaviour of a viscoelastic beam made of
a material described by the fractional derivative Kelvin-Voigt model and subjected to a force
travelling with a constant acceleration are presented. The solution to the governing equations
is based on the method presented by Beyer and Kempfle (1995) or by Rossikhin and Shitikova
(1997). The solution is achieved with the aid of a convolution integral of fractional Green’s
function and the forcing function. Green’s function is formulated by two terms. The first term
describes damped vibrations around the drifting equilibrium position, while the second term
describes the drift of the equilibrium position. In the author’s opinion, the proposed method
of solution of fractional differential equations has advantages over the solution with Green’s
function in the form of the Mittag-Leffler series, which are presented in other works (Podlubny,
1996; Abu-Mallouh et al., 2012), because the mentioned series has a weak convergence rate.
Furthermore, in some cases, the integral containing the second term of Green’s function K2
can be neglected (Eqs. (2.15) and (2.17)) (Rossikhin and Shitikova, 1997; Kempfle et al., 2012),
which significantly reduces the time of numerical calculations.
Utilizing the obtained solution to the governing equations, exemplary calculations of a beam

subjected to a moving load have been performed. In the first step, responses of the examined
beam subjected to the travelling force with a constant velocity have been calculated using the
obtained solution and formulae given by Fryba (1972). The calculation results obtained using
both equations are virtually identical. Afterwards, responses of the beam subjected to a force
moving at a constant and accelerated velocity have been computed. To the best of the author’s
knowledge, responses of a beam whose internal dissipation of mechanical energy is described
by a differential equation of a fractional order and subjected to a force moving at a constant
acceleration have not been published yet.
The performed calculations reveal that in the case of a force moving at a constant velocity,

the calculated maximum deflection of the beam decreases with the increasing order of fractional
derivative (Figs. 4 and 5) as could be expected (see section above). In the case of a force moving
at a constant velocity, the calculated beam responses are similar to those presented in the works
of other authors (e.g. Fryba, 1972; Bajer and Dyniewicz, 2012; Abu Hilal and Zibdeh, 2000).
In the case of a force moving at a constant acceleration, for all computational examples, the

maximum beam deflection occurs when γ = 0.25. In the case of ε/εcr = 0.5, the beam responses
computed for various orders of the fractional derivatives differ slightly. The difference between
the responses computed for various orders of the fractional derivatives are smaller for ε/εcr = 0.5
than for the responses obtained for ε/εcr = 1.0.
The proposed approach expands the methods employing fractional calculus in the analysis

of transient dynamic processes.

A. Appendix

Fractional Green’s function of Eq. (2.13) can be found by the inverse Laplace transform of the
expression below (Bagley and Torvik, 1983b; Beyer and Kempfle, 1995; Rossikhin and Shitikova,
1997; Podlubny, 1999)

g(p) =
1

p2 + µγpγω20 + ω
2
0

(A.1)

therefore

G(t) = L−1[g(p)] =
1

2πi

c+i∞∫

c−i∞

ept

p2 + µγpγω
2
0 + ω

2
0

dp (A.2)
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The inverse transform integral is evaluated using Cauchy’s residue theorem (Brown and Chur-
chill, 2003). The function g(p) has only two poles lying in the left complex plane (Beyer and
Kempfle, 1995; Rossikhin and Shitikova, 1997). Moreover, the function g(p) has a branch point
at the origin, and the branch cut follows the negative real axis, then the negative real half-axis
have to be encircled by the integration contour. The contour of integration, used in conjunction
with the residue theorem, is shown in Fig. 11.

Fig. 11.

Therefore, it can be stated that

∮

L123456

G(p) dp = 2πi
2∑

k=1

rezpkg(p) (A.3)

and

∮

L1

g(p) dp+

∮

L2

g(p) dp+

∮

L2

g(p) dp +

∮

L4

g(p) dp+

∮

L5

g(p) dp+

∮

L6

g(p) dp

= 2πi
n∑

k=1

rezpkg(p)

(A.4)

but

G(t) =
1

2πi

∮

L1

g(p) dp (A.5)

thus

∮

L1

g(p) dp = −

(∮

L2

g(p) ds +

∮

L3

g(p) dp+

∮

L4

g(p) dp+

∮

L5

g(p) dp +

∮

L6

g(p) dp

)

+ 2πi
n∑

k=1

rezpkg(p)

(A.6)

It could be shown that the integrals along contours L2, L4, L6 are equal to 0. The integrals along
the contours L3 and L5 could be evaluated using substitution p = re

iπ and p = re−iπ. Noting
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that reiπ = re−iπ = r(cos π ± i sinπ) = −r, p = −r and dp = −dr, the integrals I3 and I5 along
the contours L3 and L5 can be evaluated as below

I3 + I5 =

∫

L3

ept

p2 + µγω20p
γ + ω20

dp +

∫

L5

ept

p2 + µγω20p
γ + ω20

dp

=

0∫

R

−e−rt

r2ei2π + µγω
2
0r
γeiγπ + ω20

dr +

R∫

0

−e−rt

r2e−i2π + µγω
2
0r
γe−iγπ + ω20

dr

(A.7)

and

I3 + I5 =

0∫

R

−e−rt

r2 + µγω
2
0r
γ [cos(πγ) + i sin(πγ)] + ω20

dr

+

R∫

0

−e−rt

r2 + µγω20r
γ [cos(πγ)− i sin(πγ)] + ω20

dr =

0∫

R

−e−rt(A− iB)

A2 + B2
dr

+

R∫

0

−e−rt(A+ iB)

A2 + B2
dr =

R∫

0

e−rt(A− iB

A2 + B2
dr +

R∫

0

−e−rt(A+ iB)

A2 + B2
dr

=

R∫

0

−2µγω
2
0r
γe−rti sin(πγ)

A2 + B2
dr

(A.8)

where

A = r2 + µγω
2
0r
γ cos(πγ) + ω20

B = µγω
2
0r
γ sin(πγ)

Denoting the sum of integrals in the RHS of Eq. (A.8) as K2, and for R → ∞, the following
relationship is obtained

K2(t) =
−1

2πi

∞∫

0

−2µγω
2
0r
γe−rti sin(πγ)

A2 + B2
dr =

µγω
2
0 sin(πγ)

π

∞∫

0

rγe−rt

A2 + B2
dr (A.9)
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